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Abstract— An advanced Battery Management System (BMS)
is required to operate lithium-ion (Li-ion) batteries efficiently
and safely. Such a BMS should estimate the cells internal states
(residual charge, temperature, ions concentrations) accurately
and, at the same time, with a reduced computational cost. In
this work, the concentrations in a Li-ion cell are estimated via
a Sliding Mode Observer (SMO) applied to the electrochemical
Single Particle Model (SPM); thanks to the selected model
solution technique, this setup offers accurate estimations of
both distributed and bulk quantities, with high computation
efficiency. An observability issue is encountered in a simple
SMO application to SPM, which is overcome by a new two-
step algorithm for the design of the observer gain matrix. This
algorithm aims at preserving the total lithium mass estimated
by the SMO. The proposed approach is validated in simulation
with currents as high as 10C.

I. INTRODUCTION

Lithium ion (Li-ion) batteries represent nowadays the

most adopted technology for both (hybrid) electric vehicles

and consumer electronics. In fact, they offer outstanding

energy and power densities compared to other chemistries.

However, the materials employed to manufacture Li-ion

cells suffer from chemical instability and are subject to

possible over-heating and even explosion. To deal with their

nature, Li-ion cells require advanced Battery Management

System (BMS) for accurate measurements, estimations and

monitoring of the battery pack.

STILL SAME AS CDC UKF

Because of inaccuracies in the estimation, the current BMS

design approach is often conservative; the BMS does not

exploit the full potential of the battery. The key factors in

operating a Li-ion cell are essentially the need for accurate

modeling, parameters identification and state estimation.

A Li-ion cell is mainly composed of a negative and

positive electrode, and a separator [1]. The electrodes have

a lattice structure, in which active material (i.e. lithium) is

stored, and are immersed in an (usually liquid) electrolyte.

The separator is an electrical insulator which allows only

the Li-ions to flow through it. During discharge, lithium

diffuses to the surface of active material particles of the

negative electrode and it undergoes the electron-generating

reaction. Then, Li-ions, dissolved in the electrolyte, cross the

separator, while electrons are conducted by the solid lattice

to the current collector. Finally, both Li-ions and electrons
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reach the positive electrode and are reabsorbed in the active

material particles. This process is called dual-intercalation,

and is described with more detail for example in [2].

Li-ion cells models can be of various complexity, as shown

in [3], starting from equivalent circuits, to advanced Compu-

tational Fluid Dynamics (CFD) models, that are extremely

accurate, but at the price of high computational cost. In

the aforementioned work, it was also shown how standard

battery operations could be improved if limitations were

applied to reactions overpotentials instead of just on terminal

voltage (as done in current practice). This improvement can

only be achieved if a sufficiently accurate model is selected,

with insight on the electrochemical reactions taking place

inside the cell. In particular, internal lithium concentration

gradients represent a crucial information if one wants to

effectively avoid reaching locally critical depletion levels

[4]. The first-principle Pseudo 2-Dimensional (P2D) model

originally formulated in [5], and later adopted in works

such as [6], [7] and [2], is widely recognized as a valuable

trade-off between modeling detail and computational cost.

The P2D model, relying on Partial Differential Algebraic

Equations (PDAEs), poses some limitation in terms of com-

putational demands and observer formulation. The literature

offers several methods to find approximated and/or reduced-

order solutions to the whole model or just to the solid-phase

diffusion dynamics [8]. For example, the Single Particle

Model (SPM) [9] assumes each electrode as composed by

a single spherical particle, thus neglecting the electrolyte

dynamics. This model does not encompass concentrations

gradients in longitudinal direction; as a consequence, it

is accurate for low currents only. Another approach is to

simplify the diffusion dynamics in the spherical particles

radial direction. For example, [10] forces an assumption of

parabolic or polynomial concentrations distribution in active

material particles. Integral expressions for the response of

reaction molar flux for short times and long times were,

instead, introduced by [5]. Furthermore, [7] proposed a

solid phase diffusion impedance model, and applied Finite

Elements Method (FEM) on electrolyte phase. The present

work employs a Finite Difference Method (FDM) space-

discretization technique for the PDAEs as it allows for easy

order rescaling and maintains the physical meaning of all the

variables and parameters.

CITATIONS general SMO [11], [12]

SMO to battery, equivalent circuit, only SoC, reduce chat-

tering with a self-adjusted switching gain [13]

State estimation techniques reflect the complexity and ac-

curacy of the models they employ. One of the most successful



and well investigated approach employs the SPM [14]. Other

works employ the P2D model by proposing different types

of order reduction: [4] estimates the instantaneous available

current; [15] estimates the bulk SoC using an Extended

Kalman Filter (EKF) on a linearized version of the P2D

model; [16] extends the estimation to the Li-ion concentra-

tions using a Kalman Filter based on orthogonal collocation.

The nonlinear nature of the cell dynamics may be better

suited for nonlinear filtering techniques: [17] investigates the

use of Unscented Kalman Filter (UKF) for SoC estimation

in an simple equivalent circuit model, while [18] applies it

to a volume-averaged electrochemical model. The previous

results prove that the UKF approach [19] is an interesting

tool to account for the cell nonlinear dynamics. The present

work further extends the application of the UKF to the com-

plete (i.e. not simplified) electrochemical P2D model. This

not only enables the accurate estimation of bulk quantities,

such as SoC, but also exploits the capability of the P2D

model to estimate local concentration values in any point of

the cell. The UKF approach has mainly three advantages:

1) it does not require a closed-form representation of the

dynamics; this makes it very useful to avoid analytically

solving the algebraic constraints, 2) it can be easily modified

to account for soft-constraints that, as illustrated, improve

the model observability, and 3) it is amenable to parallel

implementation.

This paper is structured as follows. In Section II, the

P2D model is recalled and space-discretized. In Section

??, the main problems arising from applying the classical

UKF to the P2D model are first introduced, then solved

by implementing the concept of soft-constrained UKF; also,

the results of UKF parallel implementation are shown. The

new approach is fully validated in simulation in Section IV.

Finally, conclusions are drawn in Section V.

II. SINGLE PARTICLE MODEL

In the SPM, the dual-intercalation process is described

by a set of PDAEs, only considering the diffusion dynamics

that take place inside the spherical particles, along the radial

direction r; diffusion across the battery film thickness is

neglected. The diffusion dynamics in the two electrodes is

ruled by Fick’s law:

∂cs,i
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∂

∂ r
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)

(1)

where cs is the concentration of lithium in solid phase, and

subscript i = {n, p} indicates negative or positive electrode,

respectively; Ds is the solid phase diffusion coefficient. The

boundary conditions at the particle core and surface are,

respectively:
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where as is the specific interfacial area and F is Faraday’s

constant. jLi is the molar flux at particle surface, and is

related to the input current I as follows:

jLi
n =

I

as,nFAδn

jLi
p =−

I

as,pFAδp

(2)

where A is the electrode plate area and δ is the electrode

thickness. The overpotential η can be computed from the

inversion of Butler-Volmer kinetics equation, under the com-

monly accepted hypothesis of equal charge transfer coeffi-

cients in the two electrodes (αn = αp = 0.5):

ηi =
2RT

F
sinh−1

(

F

2 j0,i
jLi
i

)

where R is the universal gas constant; T is the lumped cell

temperature; j0 is the exchange current density. Finally, the

output voltage is given by:

V = (Up +ηp)− (Un +ηn)−
R f

A
I (3)

where R f is the film resistance of the electrode plate and

U is the thermodynamic equilibrium potential, a non-linear

function of surface concentration css. In the following, the

subscript ss denotes the superficial element of concentration,

i.e. css,i = cs,i(r = Rs,i), while the subscript sc denotes the

core element of concentration, i.e. csc,i = cs,i(r = 0).
It is also useful to introduce the definition of stoichiometry,

that is the normalized version of concentration over the

maximum value cmax
s,i :

θs,i =
cs,i

cmax
s,i

and the definition of State of Charge (conventionally com-

puted on negative electrode):

SoC =

(

3

R3
s,n

∫ Rs,n

0
r2θs,n dr

)

−θ 0%
s,n

θ 100%
s,n −θ 0%

s,n

where θ 0,100%
s,n are the values of stoichiometry, respectively,

at 0 and 100% SoC.

The SPM is discretized in space and solved via Chebyshev

orthogonal collocation method. Here we summarize only

the main steps behind this approach, while the reader may

refer to [16] for a complete discussion on the method and

its computational details. Essentially, the proposed method

consists in the following steps:

1) A proper change of variables is introduced and the

diffusion equations are written accordingly.

2) A system of linear ODEs is obtained and solved thanks

to Chebyshev differentiation matrices, which allow to

approximate PDEs solutions as polynomials at the Nc+
1 Chebyshev nodes (here Nc = 20 is set).

3) The non-linear output equation of the model is anal-

ogous to (3) (that is, a function of the linear system

outputs and of the input current).



As part of the first step introduced above, a new state vector

is defined in place of cs,i, with a suitable change of variables:

ωi = rcs,i (4)

so that the diffusion equation (1) can be rewritten, after

defining ρ = r/Rs,i, as:

∂ωi

∂ t
=

Ds,i

R2
s,i

∂ 2ωi

∂ρ2
. (5)

Secondly, gradients of ωi along ρ are approximated thanks

to Chebychev differentiation matrices C1 and C2, for first and

second derivative, respectively:

∂ωi

∂ρ
≈C1ωi (6)

∂ 2ωi

∂ρ2
≈C2ωi. (7)

In this way, the system is formulated in state-space form as:
{

ω̇i = Aω,iωi +Bω,i jLi
i

cs,i =Cω,iωs,i +Dω,i jLi
i

(8)

where Aω,i,Bω,i,Cω,i,Dω,i are the state-space matrices ob-

tained from manipulation of C1 and C2. cs,i is considered

as the output of the reformulated linear system. Eventually,

a single state vector Ω is defined as the concatenation of ωn

and ωp. Also, since cs,i is a linear function of the state ωi

and of the input I, equation (3) can be properly rewritten to

obtain the final state-space representation of the cell model:
{

Ω̇ = AΩΩ+BΩI

V = h(Ω, I)
(9)

where AΩ is obtained by concatenating matrices Aω,i and BΩ

by concatenating matrices Bω,i and scaling them according to

equations (2). The obtained model has a linear state transition

equation and a non-linear output function.

III. SLIDING MODE OBSERVER DESIGN

The objective of this section is to estimate concentrations

inside the spherical particles, which are unmeasurable quan-

tities, based on the SPM and measured output voltage. A

generic SMO approaches this problem by implementing a

copy of the model and injecting a discontinuous correction

term on the state transition equation. Indicating with Ω̂ and

V̂ , respectively, the estimated state and output of the system,

the following observer structure is obtained:
{

˙̂Ω = AΩΩ̂+BΩI+Mv

V̂ = h(Ω̂, I)

where v is the discontinuous injection term, while M is the

observer gain matrix, to be designed so as to drive to zero

in finite time the sliding variable defined as:

σ = eV =V − V̂

which is the output voltage estimation error. The injection

term is simply given by:

v = sign(eV ).

Note that, since it is difficult to give a physical interpretation

to a correction term on state Σ, the actual implementation

of the SMO proposed here acts directly on cs,i; details are

skipped for the sake of brevity. In the following exemplifi-

cations, correction terms are thus applied on cs,i, which can

be better understood by the reader.

The proposed SMO is based on the following two assump-

tions:

Assumption 1: Since Un and Up, appearing in output

function h(·), are monotonically decreasing functions, re-

spectively, of θss,n and θss,p (see [6] for some examples of

such functions for different cell chemistries), it is reasonable

to assume that a positive error on V is due to a negative

error on cs,n and to a positive error on cs, p. In symbols,

this assumption can be expressed as:

eV > 0 ⇒

{

ĉs,n < cs,n

ĉs,p > cs,p
.

This assumption extends the one made by [20] to the case

with two electrodes.

Assumption 2: The ”true” cell (in this work: the simulated

system) is at steady-state at the beginning of the test, i.e. a

sufficient time in rest condition has passed, so that inner

concentration gradients are null. Thus, SMO initialization

should be uniform in terms of cs along r.

A. SMO with uniform correction

One simple choice for matrix M is a scalar gain m multi-

plying a vector of ”+1”s in all Nc+1 positions corresponding

to cs,n and ”-1”s in all Nc+1 positions corresponding to cs,p:

M = m
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. (10)

This implies that the correction of concentrations takes

place uniformly along r for all elements of both negative

and positive electrodes, with proper sign, as depicted in

Figure 1. However, the SPM is characterized by a poor

t
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Fig. 1. Concentrations correction in SMO, with M designed as in (10).



observability of the core concentration of active material

particles from the measured voltage, as analyzed by [14].

Also, the uniform injection mechanism in SMO does not

guarantee the conservation of total lithium mass in the cell.

In fact, concentration is corrected in the two electrodes with

a certain gain, with proper sign, but without any information

on how much lithium is withdrawn from an electrode and

how much is supplied to the other one, due to the injection

term (recall that, in general, the physio-chemical and geo-

metrical characteristics of the two elecrode are different).

Thus, without any additional enforcement of lithium mass

conservation, the total mass of lithium in SMO soon moves

from its initial value, and state estimate does not converge

to an acceptable result. A simulation study is reported here

to confirm this issue.

The test consists in a pulse discharge at 0-10C (i.e. 10

times the nominal current of the cell, defined as I/Q, where

Q is the cell rated capacity), starting from a fully charged

cell (SoC0 = 100%), with pulses and rests of 10s duration.

The SMO is initialized with a 20% error in SoC (SoC0,SMO =
80%). The following state estimation errors are introduced,

for surface and core concentrations, respectively, for both

electrodes:

ess,i = css,i − ĉss,i

esc,i = csc,i − ĉsc,i

Although the sliding variable eV is driven to zero in about

9s, as shown in Figure 2, the state estimates do not converge

to the ”true” values, as clear from Figures 3 and 4. This
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Fig. 2. Output voltage estimation error for SMO with uniform correction.

behavior is explained by investigating the number of moles

of lithium stored in each electrode; for the SPM, this can be

computed as:

ns,i =
3Aδiεs,i

R3
s,i

∫ Rs,i

0
r2cs,i dr

where εs is the solid-phase volume fraction, while the total

number of moles of lithium stored in the cell is the sum of

those of the two electrodes:

ns = ns,n + ns,p.

In order for ns to remain constant, any variation in ns,n

should be compensated by an equal and opposite variation

in ns,p, and vice-versa. Figure 5 shows the number of moles

of lithium available in the two electrodes and in the cell

during the previous test, for both simulated cell and SMO.
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Fig. 3. Negative electrode state estimation errors for SMO with uniform
correction (top: particle surface; bottom: positive electrode.
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Fig. 4. Positive electrode state estimation errors for SMO with uniform
correction (top: negative electrode; bottom: positive electrode).

In discharge conditions, as those considered here, negative

electrode is emptying with lithium, while positive electrode

is getting filled; however, here, there is a clear decrease in

total number of moles of lithium in the first part of the

simulation for SMO with uniform correction. This means

that the variations in ns,n and ns,p are not balanced with such

observer design.

B. SMO with mass-preserving correction

The algorithm proposed here has the objective of over-

coming the above limitations of SMO applied to the SPM.

It enforces total lithium mass conservation, by designing M

according to the following two steps:

1) correct all Nc + 1 elements of cs,n as in (10);

2) correct each element k (for k = 1..Nc + 1) of cs,p

enforcing null mass variation w.r.t. the k-th element

of cs,n.

Importantly, the correction on cs,p has the same sign as in

(10), but with a pondered gain design. While step 1 above
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Fig. 5. Mass conservation problem in SMO with uniform correction:
number of moles of lithium available in negative electrode, positive electrode
and cell.

is trivial, step 2 needs an analysis on electrode properties.

Although the SPM describes the dynamics of only one

sphere in each electrode, the lattice structure is composed of

thousands of millions particles. Based on the cell parameters,

the number of active material spheres in each electrode can

be computed as the ratio of effective electrode volume over

the volume of an individual sphere:

N
sph
i =

Aδiεs,i

4
3
πR3

s,i

.

When the correction term is applied to the k-th element of

cs,n, a variation in lithium concentration is obtained (w.r.t.

just the open-loop state transition), which is called ∆cn,k. This

means that all spheres in negative electrode are receiving

such a variation in concentration at position k along r (recall:

SPM does not distinguish among spheres along x direction).

The overall variation of the number of moles of lithium

available in the negative electrode at position k is thus given

by:

∆nn,k = ∆cn,kNsph
n V sec

n,k (11)

where V sec
n,k is the volume of the k-th spherical sector in neg-

ative electrode. To ensure mass conservation, the correction

term of the k-th element of cs,p should lead to a variation in

lithium moles equal and opposite to that of the k-th element

of cs,n:

∆np,k =−∆nn,k.

Finally, with a similar reasoning as that applied to write

(11), the corresponding variation in lithium concentration in

positive electrode is found as:

∆cp,k =
∆np,k

N
sph
p V sec

p,k

=−
∆cn,kN

sph
n V sec

n,k

N
sph
p V sec

p,k

(12)

which is the correction term to be applied to the k-th element

of cs,p to exactly balance the k-th injection term of of

cs,n. In this way, the total mass of lithium available in the

cell is conserved. Notice that, as opposed to the strategy

presented in Section III-A, the correction of concentrations

is not uniform in positive electrode, and it is an explicit

function of that applied to the negative electrode, as depicted

in Figure 6. The following section validates this algorithm

t
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Fig. 6. Concentrations correction in SMO, with M designed as described
in Section III-B.

with a simulation study.

IV. VALIDATION

This section validates the mass-preserving SMO presented

in the previous section. The considered test is the same

as described in the previous section. Figure 7 shows the

sliding variable in mass-preserving SMO, for different values

of the scalar gain m (applied only on negative electrode,

as explained earlier). The following considerations can be

drawn:

• sliding mode of variable eV is successfully enforced;

• reaching time (defined in the Sliding Mode literature as

the time needed by σ to reach zero for the first time)

is linearly decreasing with observer gain: it is roughly

1.5s, 15s and 150s, respectively, for m= 10−2, 10−3 and

10−4;

• on the other hand, the higher is m, the more evident

are oscillations around zero of the sliding variable,

especially towards the end of simulation (where output

equation is more non-linear); in other words, lower

values of m entail a longer reaching time, but a more

stable estimation;

• as depicted in Figure 8, during sliding, injection variable

v exhibits high-frequency switching, which is typically

named chattering phenomenon in Sliding Mode lit-

erature; this phenomenon is usually not critical for

estimation problems.

Thanks to the designed SMO algorithm, not only eV is driven

to zero, but also all state estimation errors defined earlier (and

all other elements along r, not shown here for space reasons).

The result of state estimation convergence are presented in

Figure 9 for surface concentrations and in Figure 10 for core

concentrations. Notice that the same properties described for

eV hold true in these cases as well. Given the convergence of

state estimations, it follows immediately that SoC estimation

is also converging, with the same properties as observed

above, as shown in Figure 11.
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Fig. 7. Output voltage estimation error for SMO with mass-preserving
correction, for different values of gain m.
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Fig. 8. Injection variable for SMO with mass-preserving correction, for
different values of gain m.

To test the mass-preserving SMO estimation robustness,

the above test is repeated with additive measurement noise

acting on V . The noise is white, with null mean and variance

equal to 1mV. Even in this scenario, state estimation errors

converge to zero. However, the following considerations are

due:

• reaching time is longer than without measurement noise;

• oscillations are present on state estimates, as expected,

along the entire duration of the test, which are filtered

by lower values of gain m;

As such, a trade-off is clearly observed, which was less

prominent without noise: a lower gain m leads to slower

convergence of state estimates, but also to less noisy signals

(filtering effect of state observer is enhanced).

V. CONCLUSIONS

In the present work, a SMO is applied to the electro-

chemical SPM. A mass-preserving design algorithm is pro-

posed for the choice of the SMO gain matrix. This enables

to overcome the weak observability issues associated with

SPM, and to successfully estimate lithium concentrations

profiles along particles radii and bulk State of Charge. The

obtained results are confirmed with noisy output voltage

measurements.

As a future work, the algorithm robustness w.r.t. model

parametric uncertainty may be investigated as well. Also,

further oscillations suppression in estimated states may be

achieved by designing a second-order SMO. A natural ap-

plication of the proposed algorithm is the implementation

on a real-world BMS, thanks to its inherent computational

efficiency.
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